Medicine Notes > Oxford Medicine Notes > Organisation of the Body Notes

How Is Thyroid Gland Structure Organised In Relation To Its Function Notes

This is a sample of our (approximately) 4 page long How Is Thyroid Gland Structure Organised In Relation To Its Function notes, which we sell as part of the Organisation of the Body Notes collection, a First package written at Oxford in 2014 that contains (approximately) 257 pages of notes across 38 different documents.

Learn more about our Organisation of the Body Notes

The original file is a 'Word (Docx)' whilst this sample is a 'PDF' representation of said file. This means that the formatting here may have errors. The original document you'll receive on purchase should have more polished formatting.

How Is Thyroid Gland Structure Organised In Relation To Its Function Revision

The following is a plain text extract of the PDF sample above, taken from our Organisation of the Body Notes. This text version has had its formatting removed so pay attention to its contents alone rather than its presentation. The version you download will have its original formatting intact and so will be much prettier to look at.

6/03/2014

How is thyroid gland structure organised in relation to its function?
Explain the likely symptoms if a patient were deficient in iodine. Structure of the thyroid gland relating to its function The thyroid gland is found anterior to the 2nd to 4th collagneous costal rings of the trachea and is loosely attached to it by a pretrachial fascia which gives of fine collagenous branches that divides the gland into lobules. By having this loose attachment it enables the thyroid to move on swallowing which makes it easy to notice if there is an abnormal enlargement of the gland. The thyroid gland consists of two lateral lobes which are found on either side of the larynx and trachea. The thyroid gland has a rich blood supply which is essential as it enables efficient transport of the hormones stimulating the gland and efficient removal of the hormones secreted by the gland. Arterial supply from the gland comes from the superior thyroid and inferior thyroid arteries which are branches from the common carotid whilst venous blood drains into the jugular veins. The main function of the thyroid gland is to store, synthesise and secrete hormones. In order to maximise its specific role it has a unique structure. The functional units of the thyroid gland are the thyroid follicles which are spherical structures that have an outer layer composed of a single layer of cuboidal epithelium which is bound by a basement membrane. When these follicles are stained with haemotoxylin and eosin and viewed under an electron microscopy it is seen that the follicle lumen has a dense pink colour. Due to its pink staining, the material found in the lumen is known as colloid and biochemical investigations show that it contains iodinated thryoglobulin which is an inactive precurosor of the thyroid hormone. Having a large extracellular storage is functionally advantageous as it protects against nutrient deficiency and ensures that thyroid hormones can always be made even under conditions of starvation. Having cuboidal epithelium surrounding the colloid is important as its main function is to synthesise iodinated thryoglobulin and replenish the stores. The follicular cells make hormones T3 and T4 in response to the TSH hormone released from the anterior pituitary gland. The TSH binds to GPCR on the basolateral surface of follicular cells which results in an increase in intracellular concentration of cyclic AMP. The rise in cyclic AMP stimulates the Na/K ATPase pump and this maintains a high extracellular sodium concentration which stimulates the sodium iodide symporter in the basal plasma membrane. This protein actively transports iodide from the blood into the follicular cells where it is oxidised to iodine via thryoperoxidase enzyme and is transported across the apical membrane and is secreted into the follicular lumen via the transporter pendrin. By having different proteins inserted into the basolateral and apical surfaces it enables these follicular cells to uptake and concentrate iodide from the blood and transport it into the lumen in a unidirectional manner.

1

****************************End Of Sample*****************************

Buy the full version of these notes or essay plans and more in our Organisation of the Body Notes.